
Mathematical computations with GPUs

Introduction to OpenCL

Alexey A. Romanenko

arom@nsu.ru
Novosibirsk State University

Master Educational Program
“Information technology in applications”

 A standard based upon C for portable parallel applications.

 Task parallel and data parallel applications

 Focuses on multi platform support (multiple CPUs, GPUs, …)

 Development initiated by Apple.

 Developed by Khromos group who also managed OpenGL
 OpenCL 1.0 2008. Released with Max OS 10.6 (Snow Leopard)
 OpenCL 1.1 June 2010

 Similarities with CUDA.

OpenCL (Open Computing Language)

OpenCL Timeline
• Six months from proposal to released specification

- Due to a strong initial proposal and a shared commercial incentive to work quickly

• Apple’s Mac OS X Snow Leopard will include OpenCL
- Improving speed and responsiveness for a wide spectrum of applications

• Multiple OpenCL implementations expected in the next 12
months
- On diverse platforms

Apple works
with AMD,

Intel, NVIDIA
and others on
draft proposal

Apple proposes
OpenCL

working group
and contributes

draft
specification to

Khronos

OpenCL
working
group

develops
draft into

cross-vendor
specification

Working
Group sends

completed
draft to

Khronos
Board for

Ratification

Khronos
publicly
releases

OpenCL as
royalty-free
specification

Khronos to
release

conformance tests
to ensure high-

quality
implementations

Jun08 Oct08

Dec08

May09

⚫ Platform Model

⚫ Memory Model

⚫ Execution Model

⚫ Programming Model

Модель OpenCL

• One Host + one or more Compute Devices
- Each Compute Device is composed of one or more Compute Units

- Each Compute Unit is further divided into one or more Processing Elements

OpenCL Platform Model

Local Memory Local Memory

Global / Constant Memory Data Cache

Global Memory

• Shared memory model
- Relaxed consistency

• Multiple distinct address spaces
- Address spaces can be collapsed depending on the

device’s memory subsystem

• Address spaces
- Private - private to a work-item
- Local - local to a work-group
- Global - accessible by all work-items in all work-

groups
- Constant - read only global space

• Implementations map this hierarchy
- To available physical memories

Compute Device Memory

Compute Device

PE PE PE PE

OpenCL Memory Model

• OpenCL uses a “relaxed consistency memory model”

- State of memory visible to a work-item not guaranteed to be consistent
across the collection of work-items at all times

• Memory has load/store consistency within a work-item

• Local memory has consistency across work-items within a work-
group at a barrier

• Global memory is consistent within a work-group at a barrier, but
not guaranteed across different work-groups

• Memory consistency for objects shared between commands
enforced at synchronization points

Memory Consistency

• OpenCL Program:
- Kernels

- Basic unit of executable code — similar to C functions, CUDA kernels, etc.
- Data-parallel or task-parallel

- Host Program
- Collection of compute kernels and internal functions
- Analogous to a dynamic library

• Kernel Execution
- The host program invokes a kernel over an index space called an NDRange

- NDRange, “N-Dimensional Range”, can be a 1D, 2D, or 3D space

- A single kernel instance at a point in the index space is called a work-item
- Work-items have unique global IDs from the index space

- Work-items are further grouped into work-groups
- Work-groups have a unique work-group ID
- Work-items have a unique local ID within a work-group

OpenCL Execution Model

• Total number of work-items = Gx * Gy

• Size of each work-group = Sx * Sy

• Global ID can be computed from work-group ID and local ID

Kernel Execution

Contexts and Queues

• Contexts are used to contain and manage the state of the
“world”

• Kernels are executed in contexts defined and manipulated by
the host

- Devices
- Kernels - OpenCL functions
- Program objects - kernel source and executable
- Memory objects

• Command-queue - coordinates execution of kernels
- Kernel execution commands
- Memory commands: Transfer or map memory object data
- Synchronization commands: Constrain the order of commands

• Applications queue instances of compute kernel execution
- Queued in-order
- Executed in-order or out-of-order
- Events are used to synchronization execution instances as appropriate

Programming Model

Data-Parallel Model

• Must be implemented by all OpenCL compute devices

• Define N-Dimensional computation domain
- Each independent element of execution in an N-Dimensional domain is called a work-item
- N-Dimensional domain defines total # of work-items that execute in parallel

= global work size

• Work-items can be grouped together — work-group
- Work-items in group can communicate with each other
- Can synchronize execution among work-items in group to coordinate memory access

• Execute multiple work-groups in parallel
- Mapping of global work size to work-group can be implicit or explicit

Programming Model

Task-Parallel Model

• Some compute devices can also execute task-parallel compute
kernels

• Execute as a single work-item

- A compute kernel written in OpenCL
- A native C / C++ function

• Host program
- Query compute devices
- Create contexts
- Create memory objects associated to contexts
- Compile and create kernel program objects
- Issue commands to command-queue
- Synchronization of commands
- Clean up OpenCL resources

• Kernels
- C code with some restrictions and extensions

Basic OpenCL Program Structure

Platform Layer

Runtime

Language

OpenCL C Language Restrictions

⚫ Pointers to functions not allowed

⚫ Pointers to pointers allowed within a kernel, but not as an
argument

⚫ Bit-fields not supported

⚫ Variable-length arrays and structures not supported

⚫ Recursion not supported

⚫ Double types - OpenCL 1.2 and newer

⚫ Some restrictions are addressed through extensions

https://www.khronos.org/registry/OpenCL/specs/3.0-
unified/html/OpenCL_C.html#restrictions

https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/OpenCL_C.html#restrictions

⚫ C for CUDA Kernel Code:
__global__ void

vectorAdd(const float * a, const float * b, float * c){

// Vector element index

int nIndex = blockIdx.x * blockDim.x + threadIdx.x;

c[nIndex] = a[nIndex] + b[nIndex];

}

⚫ OpenCL Kernel Code

__kernel void

vectorAdd(__global const float * a,

__global const float * b,

__global float * c){

// Vector element index

int nIndex = get_global_id(0);

c[nIndex] = a[nIndex] + b[nIndex];

}

OpenCL vs. CUDA

⚫ get_local_id()

⚫ get_work_dim()

⚫ get_global_size()

⚫ get_global_id()

Group and grid size in OpenCL

⚫ CUDA
cuInit(0);

cuDeviceGet(&hDevice, 0);

cuCtxCreate(&hContext, 0, hDevice);

⚫ OpenCL
cl_context hContext;

hContext = clCreateContextFromType(0, CL_DEVICE_TYPE_GPU,

0, 0, 0);

size_t nContextDescriptorSize;

clGetContextInfo(hContext, CL_CONTEXT_DEVICES,

0, 0, &nContextDescriptorSize);

cl_device_id * aDevices = malloc(nContextDescriptorSize);

clGetContextInfo(hContext, CL_CONTEXT_DEVICES,

nContextDescriptorSize, aDevices, 0);

cl_command_queue hCmdQueue;

hCmdQueue = clCreateCommandQueue(hContext, aDevices[0],

0,0);

OpenCL vs. CUDA. Initialization

⚫ CUDA
CUmodule hModule;

cuModuleLoad(&hModule, “vectorAdd.cubin”);

cuModuleGetFunction(&hFunction, hModule, "vectorAdd");

⚫ OpenCL
cl_program hProgram;

hProgram = clCreateProgramWithSource(hContext, 1,

sProgramSource, 0, 0);

clBuildProgram(hProgram, 0, NULL, NULL, NULL, NULL);

cl_kernel hKernel;

hKernel = clCreateKernel(hProgram, “vectorAdd”, 0);

OpenCL vs. CUDA. Creating kernel

Количество строк

Код ошибки

Код ошибки

⚫ CUDA
CUdeviceptr pDevMemA, pDevMemB, pDevMemC;

cuMemAlloc(&pDevMemA, cnDimension * sizeof(float));

cuMemAlloc(&pDevMemB, cnDimension * sizeof(float));

cuMemAlloc(&pDevMemC, cnDimension * sizeof(float));

// copy host vectors to device

cuMemcpyHtoD(pDevMemA, pA, cnDimension * sizeof(float));

cuMemcpyHtoD(pDevMemB, pB, cnDimension * sizeof(float));

OpenCL vs. CUDA. Memory
allocation

⚫ OpenCL
cl_mem hDevMemA, hDevMemB, hDevMemC;

hDevMemA = clCreateBuffer(hContext,

CL_MEM_READ_ONLY |

CL_MEM_COPY_HOST_PTR,

cnDimension * sizeof(cl_float),

pA,

0);

hDevMemB = clCreateBuffer(hContext,

CL_MEM_READ_ONLY |

CL_MEM_COPY_HOST_PTR,

cnDimension * sizeof(cl_float),

pA,

0);

hDevMemC = clCreateBuffer(hContext,

CL_MEM_WRITE_ONLY,

cnDimension * sizeof(cl_float),0, 0);

OpenCL vs. CUDA.
Memory allocation

Код ошибки

Код ошибки

⚫ CUDA

cuParamSeti(cuFunction, 0, pDevMemA);

cuParamSeti(cuFunction, 4, pDevMemB);

cuParamSeti(cuFunction, 8, pDevMemC);

cuParamSetSize(cuFunction, 12);

⚫ OpenCL:

clSetKernelArg(hKernel, 0, sizeof(cl_mem),

(void *)&hDevMemA);

clSetKernelArg(hKernel, 1, sizeof(cl_mem),

(void *)&hDevMemB);

clSetKernelArg(hKernel, 2, sizeof(cl_mem),

(void *)&hDevMemC);

OpenCL vs. CUDA.
Kernel parameters

⚫ CUDA
cuFuncSetBlockShape(cuFunction, cnBlockSize, 1, 1);

cuLaunchGrid (cuFunction, cnBlocks, 1);

⚫ OpenCL
clEnqueueNDRangeKernel(hCmdQueue, hKernel, 1, 0,

&cnDimension, &cnBlockSize, 0, 0, 0);

OpenCL vs. CUDA.
Launching kernel

⚫ CUDA

cuMemcpyDtoH((void*)pC, pDevMemC,

cnDimension*sizeof(float));

⚫ OpenCL

clEnqueueReadBuffer(hContext, hDeviceC, CL_TRUE, 0,

cnDimension * sizeof(cl_float),

pC, 0, 0, 0);

OpenCL vs. CUDA. Copy result back

⚫ OpenCL
clReleaseMemObject(hDevMemA);

clReleaseMemObject(hDevMemB);

clReleaseMemObject(hDevMemC);

free (aDevices);

clReleaseKernel (hKernel);

clReleaseProgram (hProgram);

clReleaseCommandQueue (hCmdQueue);

clReleaseContext (hContext);

Release resourses

⚫ Khronos OpenCL Homepage
http://www.khronos.org/opencl

⚫ OpenCL 3.0 Specification
https://www.khronos.org/registry/OpenCL/specs

⚫ OpenCL at NVIDIA
http://www.nvidia.com/object/cuda_opencl.html

Recourses OpenCL

